2.5V / 3.3V ECL DUAL Differential 2:1 Multiplexer

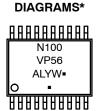
Description

The NB100LVEP56 is a dual, fully differential 2:1 multiplexer. The differential data path makes the device ideal for multiplexing low skew clock or differential data signals. The device features both individual and common select inputs to address both data path and random logic applications. Common and individual selects can accept both LVECL and LVCMOS input voltage levels. Multiple V_{BB} pins are provided.

The V_{BB} pin, an internally generated voltage supply, is available to this device only. For single–ended input operation, the unused differential input is connected to V_{BB} as a switching reference voltage. V_{BB} may also rebias AC coupled inputs. When used, decouple V_{BB} and V_{CC} via a 0.01 μF capacitor and limit current sourcing or sinking to 0.5 mA. When not used, V_{BB} should be left open.

Features

- Maximum Input Clock Frequency > 2.5 GHz Typical
- Maximum Input Data Rate > 2.5 Gb/s Typical
- 525 ps Typical Propagation Delays
- Low Profile QFN Package
- PECL Mode Operating Range:
 V_{CC} = 2.375 V to 3.8 V with V_{EE} = 0 V
- NECL Mode Operating Range: V_{CC} = 0 V with V_{EE} = -2.375 V to -3.8 V
- Separate, Common Select, and Individual Select (Compatible with ECL and CMOS Input Voltage Levels)
- Q Output Will Default LOW with Inputs Open or at V_{EE}
- Multiple V_{BB} Outputs
- These Devices are Pb-Free and are RoHS Compliant



ON Semiconductor®

http://onsemi.com

TSSOP-20 DT SUFFIX CASE 948E

MARKING

24 PIN QFN MN SUFFIX CASE 485L

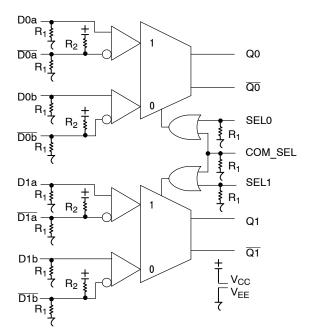
A = Assembly Location

L = Wafer Lot Y = Year W = Work Week = Pb-Free Package

(Note: Microdot may be in either location)

*For additional marking information, refer to Application Note AND8002/D.

ORDERING INFORMATION


See detailed ordering and shipping information in the package dimensions section on page 8 of this data sheet.

1

Table 1. PIN FUNCTION DESCRIPTION

Pin No.				Default	
TSSOP	QFN	Name	I/O	State	Description
14,20	3,9,18,19, 20	V _{CC}	-	_	Positive Supply Voltage. All VCC Pins must be Externally Connected to Power Supply to Guarantee Proper Operation.
11	15,24	V _{EE}	-	_	Negative Supply Voltage. All VEE Pins must be Externally Connected to Power Supply to Guarantee Proper Operation.
3,8	6,12	V _{BB0} , V _{BB1}	-	_	ECL Reference Voltage Output
1	4	D0a	ECL Input	Low	Noninverted Differential Data a Input to MUX 0. Internal 75 k Ω to VEE.
2	5	D0a	ECL Input	High	Inverted Differential Data a Input to MUX 0. Internal 75 k Ω to VEE and 37 k Ω to VCC.
4	7	D0b	ECL Input	Low	Noninverted Differential Data b Input to MUX 0. Internal 75 k Ω to $V_{EE}.$
5	8	D0b	ECL Input	High	Inverted Differential Data b Input to MUX 0. Internal 75 k Ω to V_EE and 37 k Ω to V_CC.
6	10	D1a	ECL Input	Low	Noninverted Differential Data a Input to MUX 1. Internal 75 k Ω to VEE.
7	11	D1a	ECL Input	High	Inverted Differential Data a Input to MUX 1. Internal 75 k Ω to V _{EE} and 37 k Ω to V _{CC} .
9	13	D1b	ECL Input	Low	Noninverted Differential Data b Input to MUX 1. Internal 75 k Ω to V $_{EE}.$
10	14	D1b	ECL Input	High	Inverted Differential Data b Input to MUX 1. Internal 75 k Ω to V_EE and 37 k Ω to V_CC.
19	2	Q0	ECL Output	-	Noninverted Differential Output MUX 0. Typically Terminated with 50 Ω to V _{TT} = V _{CC} – 2.0 V.
18	1	Q0	ECL Output	-	Inverted Differential Output MUX 0. Typically Terminated with 50 Ω to V _{TT} = V _{CC} – 2.0 V.
13	17	Q1	ECL Output	-	Noninverted Differential Output MUX 1. Typically Terminated with 50 Ω to V _{TT} = V _{CC} – 2.0 V.
12	16	Q1	ECL Output	-	Inverted Differential Output MUX 1. Typically Terminated with 50 Ω to V _{TT} = V _{CC} – 2.0 V.
17	23	SEL0	ECL, CMOS Input	Low	Noninverted Differential Select Input to MUX 0. Internal 75 k Ω to V_{EE} .
16	22	COM_SEL	ECL, CMOS Input	Low	Noninverted Differential Common Select Input to Both MUX. Internal 75 $k\Omega$ to $V_{EE}.$
15	21	SEL1	ECL, CMOS Input	Low	Noninverted Differential Select Input to MUX 1. Internal 75 k Ω to V _{EE} .
N/A	-	EP	-		Exposed Pad. (Note 1)

^{1.} The thermally conductive exposed pad on the package bottom (see case drawing) must be attached to a heat sinking conduit.

Table 2. TRUTH TABLE

SEL0	SEL1	COM_SEL	Q0, Q 0	Q1, Q1
Х	Х	Н	а	а
L	L	L	b	b
L	Н	L	b	а
Н	Н	L	а	а
Н	L	L	а	b

Figure 1. Logic Diagram



Figure 2. TSSOP-20 Lead Pinout (Top View)

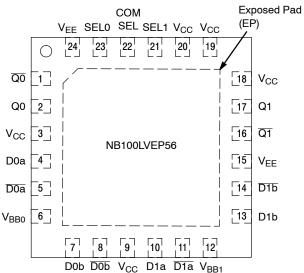


Figure 3. QFN-24 Lead Pinout (Top View)

Table 3. ATTRIBUTES

Characteri	Value			
Internal Input Pulldown Resistor	75 kΩ			
Internal Input Pullup Resistor	Internal Input Pullup Resistor (R2)			
ESD Protection	> 2 kV > 150 V > 2 kV			
Moisture Sensitivity (Note 1)		Pb Pkg	Pb-Free Pkg	
	TSSOP-20 QFN-24	Level 1 Level 1	Level 1 Level 1	
Flammability Rating Oxyg	gen Index: 28 to 34	UL 94 V-0 @ 0.125 in		
Transistor Count	354 Devices			
Meets or exceeds JEDEC Spec El	A/JESD78 IC Latchup Test			

1. For additional information, see Application Note AND8003/D.

Table 4. MAXIMUM RATINGS

Symbol	Parameter		Condition 1	Condition 2	Rating	Unit
V _{CC}	Positive Mode Power Supply		V _{EE} = 0 V		6	V
V _{EE}	Negative Mode Power Supply		V _{CC} = 0 V		-6	V
VI	Positive Mode Input Voltage Negative Mode Input Voltage		V _{EE} = 0 V V _{CC} = 0 V	$\begin{array}{c} V_I \leq V_{CC} \\ V_I \geq V_{EE} \end{array}$	6 -6	V
l _{out}	Output Current		Continuous Surge		50 100	mA mA
I _{BB}	V _{BB} Sink/Source				± 0.5	mA
T _A	Operating Temperature Range				-40 to +85	°C
T _{stg}	Storage Temperature Range				-65 to +150	°C
θ_{JA}	Thermal Resistance (Junction-to-Ambient) JEDEC 51-3 (1S - Single Layer Test Board)		0 lfpm 500 lfpm	TSSOP-20 TSSOP-20	140 50	°C/W
θ _{JA}	Thermal Resistance (Junction-to-Ambient) JEDEC 51-6 (2S2P-Multi Layer Test Board) with Filled Thermal Vias		0 lfpm 500 lfpm	QFN-24 QFN-24	37 32	°C/W °C/W
θ_{JC}	Thermal Resistance (Junction-to-Case)		Standard Board	TSSOP-20 QFN-24	23 to 41 11	°C/W
T _{sol}	Wave Solder	Pb Pb-Free			265 265	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

Table 5. DC CHARACTERISTICS, PECL $V_{CC} = 2.5 \text{ V}$, $V_{EE} = 0 \text{ V}$ (Note 2)

			-40°C		25°C			85°C			
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Negative Power Supply Current	35	45	55	35	45	55	35	48	58	mA
V _{OH}	Output HIGH Voltage (Note 3)	1355	1480	1605	1355	1480	1605	1355	1480	1605	mV
V _{OL}	Output LOW Voltage (Note 3)	555	775	900	555	775	900	555	775	900	mV
V _{IH}	Input HIGH Voltage (SEL0, SEL1, COM_SEL) Input HIGH Voltage (D Inputs) (Note 4)	1335 1335		V _{CC} 1620	1335 1335		V _{CC} 1620	1275 1275		V _{CC} 1620	mV
VIL	Input LOW Voltage (SEL0, SEL1, COM_SEL) Input LOW Voltage (D Inputs) (Note 4)	V _{EE} 555		875 875	V _{EE} 555		875 875	V _{EE} 555		875 875	mV
V _{IHCMR}	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 5)	1.2		2.5	1.2		2.5	1.2		2.5	V
I _{IH}	Input HIGH Current (@V _{IH})			150			150			150	μΑ
I _{IL}	Input LOW Current (@V _{IL})	0.5 -150 -150			0.5 -150 -150			0.5 -150 -150			μΑ

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

- Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary -0.125 V to +1.3 V.
 All loading with 50 Ω to V_{CC} 2.0 V.
 Do not use V_{BB} at V_{CC} < 3.0 V.
 V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential interval in the value of the differential interval.

Table 6. DC CHARACTERISTICS, PECL V_{CC} = 3.3 V, V_{EE} = 0 V (Note 6)

			-40°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Negative Power Supply Current	35	45	55	35	45	55	35	48	58	mA
V _{OH}	Output HIGH Voltage (Note 7)	2155	2280	2405	2155	2280	2405	2155	2280	2405	mV
V _{OL}	Output LOW Voltage (Note 7)	1355	1575	1700	1355	1575	1700	1355	1575	1700	mV
V _{IH}	Input HIGH Voltage (SEL0, SEL1, COM_SEL) Input HIGH Voltage (D Inputs)	2135 2135		V _{CC} 2420	2135 2135		V _{CC} 2420	2135 2135		V _{CC} 2420	mV
V _{IL}	Input LOW Voltage (SEL0, SEL1, COM_SEL) Input LOW Voltage (D Inputs)	V _{EE} 1355		1675 1675	V _{EE} 1355		1675 1675	V _{EE} 1355		1675 1675	mV
V_{BB}	Output Reference Voltage (Note 8)	1775	1875	1975	1775	1875	1975	1775	1875	1975	mV
V _{IHCMR}	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 9)	1.2		3.3	1.2		3.3	1.2		3.3	V
I _{IH}	Input HIGH Current (@V _{IH})			150			150			150	μΑ
I _{IL}	Input LOW Current (@V _{IL}) D D SEL	0.5 -150 -150			0.5 -150 -150			0.5 -150 -150			μΑ

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

- 6. Input and output parameters vary 1:1 with V_{CC} . V_{EE} can vary +0.5 V to -0.3 V.
- 7. All loading with 50 Ω to V_{CC} 2.0 V.
- 8. Single–Ended input operation is limited to $V_{CC} \ge 3.0 \text{ V}$ in PECL mode.
- V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal.

Table 7. DC CHARACTERISTICS, NECL V_{CC} = 0 V, V_{EE} = -3.8 V to -2.375 V (Note 10)

			-40°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Negative Power Supply Current	35	45	55	35	45	55	35	48	58	mA
V _{OH}	Output HIGH Voltage (Note 11)	-1145	-1020	-895	-1145	-1020	-895	-1145	-1020	-895	mV
V _{OL}	Output LOW Voltage (Note 11)	-1945	-1725	-1600	-1945	-1725	-1600	-1945	-1725	-1600	mV
V _{IH}	Input HIGH Voltage (SEL0, SEL1, COM_SEL) Input HIGH Voltage (D Inputs)	-1165 -1165		V _{CC} -880	-1165 -1165		V _{CC} -880	-1165 -1165		V _{CC} -880	mV
V _{IL}	Input LOW Voltage (SEL0, SEL1, COM_SEL) Input LOW Voltage (D Inputs)	V _{EE} -1945		-1600 -1600	V _{EE} -1945		-1600 -1600	V _{EE} -1945		-1600 -1600	mV
V_{BB}	Output Reference Voltage (Note 12)	-1525	-1425	-1325	-1525	-1425	-1325	-1525	-1425	-1325	mV
V _{IHCMR}	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 13)	V _{EE}	+1.2	0.0	V _{EE}	+1.2	0.0	V _{EE}	+1.2	0.0	V
I _{IH}	Input HIGH Current (@V _{IH})			150			150			150	μΑ
I _{IL}	Input LOW Current (@V _{IL}) D D SEL	0.5 -150 -150			0.5 -150 -150			0.5 -150 -150			μΑ

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

- 10. Input and output parameters vary 1:1 with V_{CC}.
- 11. All loading with 50 Ω to V_{CC} 2.0 V.
- 12. Single–Ended input operation is limited to V_{EE} from –3.0 V to –5.5 V in NECL mode.
- 13. V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal.

Table 8. AC CHARACTERISTICS $V_{CC} = 0 \text{ V}$; $V_{EE} = -2.375 \text{ V}$ to -3.8 V or $V_{CC} = 2.375 \text{ V}$ to 3.8 V; $V_{EE} = 0 \text{ V}$ (Note 14)

			-40°C			25°C		85°C			
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
V _{OUTPP}		525 500 400	700 600 500		550 500 350	700 600 450		500 400 200	700 500 300		mV
t _{PLH} , t _{PHL}	Propagation Delay to Output Differential D to Q, $\overline{\mathbb{Q}}$ SEL to Q, $\overline{\mathbb{Q}}$ COM_SEL to Q, $\overline{\mathbb{Q}}$	375 575 550	500 775 750	625 975 950	400 625 600	525 825 800	650 1025 1000	450 700 700	575 900 900	700 1100 1100	ps
t _{Skew}	Pulse Skew (Note 15) Within Device Input Skew (Note 16) Within Device Output Skew (Note 17) Device-to-Device Skew (Note 18)		10 5 15 50	50 30 50 200		10 5 15 50			10 5 15 50	50 30 50 200	ps
t _{JITTER}	RMS Random Clock Jitter (Note 19) @ ≤1.0 GHz @ ≤1.5 GHz @ ≤2.0 GHz @ ≤2.5 GHz Peak-to-Peak Data Dependent Jitter (Note 20) @ 0.5 GHz @ 1.25 GHz @ 2.488 GHz		0.269 0.306 0.250 0.339 4.1 32.2 30.8	0.4 0.4 0.4 0.8 16 80 66		0.307 0.303 0.305 0.895 4.6 22.6 27.2	0.4 0.4 0.5 2.0 15 63 56		0.371 0.391 0.722 2.443 4.4 22 24.4	0.5 0.6 1.2 7.7 16 53 54	ps
V _{INPP}	Input Voltage Swing (Differential Configuration) (Note 21)	150	800	1200	150	800	1200	150	800	1200	mV
t _r t _f	Output Rise/Fall Times @ 50 MHz Q, Q (20% – 80%)	60	110	150	60	120	170	90	140	230	ps

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

- 14. Measured using a 750 mV source, 50% duty cycle clock source. All loading with 50 Ω to V_{CC} 2.0 V. Input edge rates 150 ps (20% 80%).
- 15. Pulse Skew |t_{PLH} t_{PHL}|
- 16. Worst case difference between D0a and D0b (or between D1a or D1b), when both output come from same input.
- 17. Worst case difference between Q0 and Q1 outputs.
- 18. Skew is measured between outputs under identical transitions.
- 19. Additive RMS jitter with 50% Duty Cycle Clock Signal.
- 20. Additive Peak-to-Peak jitter with input NRZ data at PRBS 231-1.
- 21. Input voltage swing is a single-ended measurement operating in differential mode.

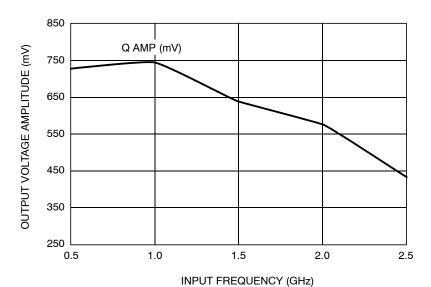


Figure 4. Output Voltage Amplitude (V_{OUTPP}) vs. Input Frequency (f_{in}) at V_{CC} = 2.5 V, 25°C

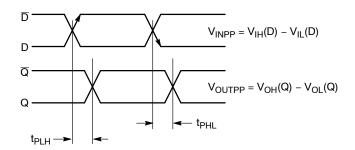


Figure 5. AC Reference Measurement

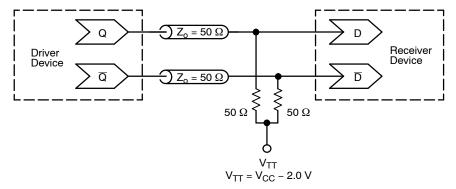


Figure 6. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020/D – Termination of ECL Logic Devices.)

ORDERING INFORMATION

Device	Package	Shipping†
NB100LVEP56DTG	TSSOP-20 (Pb-Free)	75 Units / Rail
NB100LVEP56DTR2G	TSSOP-20 (Pb-Free)	2500 Tape & Reel
NB100LVEP56MNG	QFN-24 (Pb-Free)	92 Units / Rail
NB100LVEP56MNR2G	QFN-24 (Pb-Free)	3000 Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

Resource Reference of Application Notes

AN1405/D - ECL Clock Distribution Techniques

AN1406/D - Designing with PECL (ECL at +5.0 V)

AN1503/D - ECLinPS™ I/O SPiCE Modeling Kit

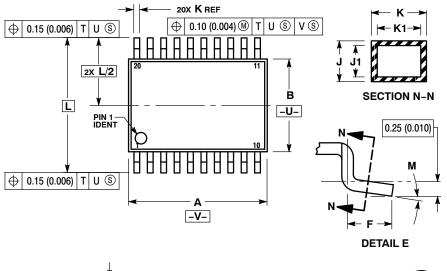
AN1504/D - Metastability and the ECLinPS Family

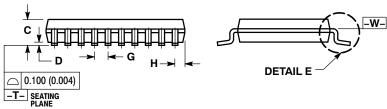
AN1568/D - Interfacing Between LVDS and ECL

AND8001/D - The ECL Translator Guide

AND8001/D - Odd Number Counters Design

AND8002/D - Marking and Date Codes


AND8020/D - Termination of ECL Logic Devices

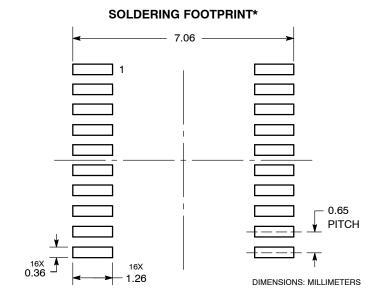

AND8066/D - Interfacing with ECLinPS

AND8090/D - AC Characteristics of ECL Devices

PACKAGE DIMENSIONS

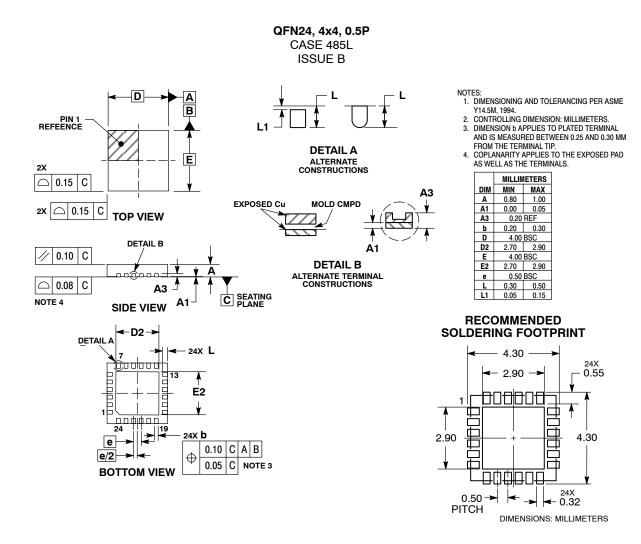
TSSOP-20 CASE 948E-02 **ISSUE C**

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: MILLIMETER.
 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.
- FLASH, PROTRUSIONS OR GATE BURRS.
 MOLD FLASH OR GATE BURRS SHALL NOT
 EXCEED 0.15 (0.06) PER SIDE.


 4. DIMENSION B DOES NOT INCLUDE
 INTERLEAD FLASH OR PROTRUSION.
 INTERLEAD FLASH OR PROTRUSION
 SHALL NOT EXCEED 0.25 (0.010) PER SIDE.

 5. DIMENSION K DOES NOT INCLUDE
 DAMBAR PROTRUSION. ALLOWABLE
 DAMBAR PROTRUSION SHALL BE 0.08
 (0.003) TOTAL IN EXCESS OF THE K
 DIMENSION AT MAXIMUM MATERIAL
 CONDITION.

 6. TERMINAL NUMBERS ARE SHOWN FOR
 REFERENCE ONLY.
- REFERENCE ONLY.


 7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-.

	MILLIN	IETERS	INC	HES	
DIM	MIN	MAX	MIN	MAX	
Α	6.40	6.60	0.252	0.260	
В	4.30	4.50	0.169	0.177	
С		1.20		0.047	
D	0.05	0.15	0.002	0.006	
F	0.50	0.75	0.020	0.030	
G	0.65	BSC	0.026	BSC	
Н	0.27	0.37	0.011	0.015	
J	0.09	0.20	0.004	0.008	
J1	0.09	0.16	0.004	0.006	
K	0.19	0.30	0.007	0.012	
K1	0.19	0.25	0.007	0.010	
L	6.40		0.252 BSC		
М	0°	8°	0°	8°	

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

ECLinPS is a trademark of Semiconductor Components Industries, LLC (SCILLC).

ON Semiconductor and (III) are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all Claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada

Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center

Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative